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* these modules are realized as HyperBF networks (Poggio and Girosi, 1990a,b).

* HyperBF networks can be implemented in terms of biologically plausible mechanisms
and circuitry.

The theory predicts a specific type of population coding that represents an extension of
schemes such as look-up tables. I will conclude with some speculations about the trade-off
between memory and computation and the evolution of intelligence.



Contents

1 The Grandmother Neuron Theory 2

2 How to Synthesize through Learning the Basic Approxi-
mation Module: Regularization Networks 3
2.1 Learning ....... ............................ 5
2.2 Interpretation of the Network ..... ................ 6

3 A Proposal for a Biological I..plementation 7
3.1 Factorizable Radial Basis Functions ................. 7
3.2 Biophysical Mechanisms ..... ................... 8

3.2.1 The Network ...... ..................... 8
3.2.2 Mechanisms for Learning ................... 9

4 Visual Recognition of 3D Objects and Face Sensitive Neu-
rones 9
4.1 HyperBF Networks for Recognizing 3D Objects ...... ... 10
4.2 Face Sensitive Neurons ...... .................... 11

5 Theories of the Cerebellum and of Motor Control 12
5.1 Marr's and Albus Models of the Cerebellum ........ 12
5.2 Theories of Motor Control ..... .................. 13

6 Summary: a Proposal for How the Brain Works 15
6.1 Evolution of Intelligence: From Memory to Computation 16
6.2 Predictions and Remarks ........................ 16
6.3 The Future ....... .......................... 18

1

'I .



1 The Grandmother Neuron Theory

A classical theme in the neurophysiological literature at least since the
work of Hubel and Wiesel (1962) is the idea of inf.,rmation processing in
the brain as leading to "grandmother" neurons responding selectively to
the precise combination of visual features that are associated with one's
grandmother. The "grandmother" neuron theory is of course not restricted
to vision and applies as well to other sensory modalities and even to mo-
tor control under the form of cells corresponding to elemental movements.
Why is this idea so attractive? The ,uea is attractive because of its sim-
plicity: it replaces complex information processing with the superficially
simpler task of accessing a memory. The problem of recognition and motor
control would be solved by simply accessing look-up tables containing ap-
propriate descriptions of objects and of motor actions. The human brain
can probably exploit a vast amount of memory with its 1014 or so synapses,
making attractive any scheme that replaces computation with memory. In
the case of vision the apparent simplicity of this solution hides the diffi-
cult problems of an appropriate representation of an object and of how to
extract it from complex images. But even assuming that these problems
of representation, feature extraction and segmentation could be solved by
other mechanisms, a fundamental difficulty seems to be intrinsic to the
"grandmother" cell idea. The difficulty consists of the combinatorial ex-
plosion in the number of cells that any scheme of the look-up table type
would reasonably require for either vision or motor control. In the case
of 3D object recognition, for instance, there should be for each object as
many entries in the look-up table as there are 2-D views of the object, in
principle an infinite number.

The difficulty of a combinatorial explosion lies at the heart of theories
of intelligence that attempt to replace information processing with look-
up tables of precomputed results. In this paper we suggest a scheme that
avoids the combinatorial problem, while retaining the attractive features of
the look-up table. The basic idea is to use only a few entries and interpolate
or approximate among them. A mathematical theory based on this idea
leads to a powerful scheme of learning from examples that is equivalent
to a parallel network of simple processing elements. The scheme has an
intriguingly simple implementation in terms of plausible biophysical mech-
anisms. We will discuss in particular the case of 3D object recognition
but will propose that the scheme is possibly used by the brain for several
different information processing tasks. Many information processing prob-
lems can be represented as the composition of one or more multivariate

2



functions that map an input signal into an output signal in a smooth way.
These modules could be synthesized from a sufficient set of input-output
pairs - the examples - by the scheme described here. Because of the power
and general applicability of this mechanism, we speculate that a part of
the machinery of the brain - including perhaps some of the cortical cir-
cuitry which is somewhat similar across the different modalities - may be
dedicated to the task of function approximation.

2 How to Synthesize through Learning the
Basic Approximation Module: Regular-
ization Networks

This section describes a technique for synthesizing the approximation mod-
ules discussed above through learning from examples. I first explain how
to rephrase the problem of learning from examples as a problem of ap-
proximating a multivariate function. The material in this section is from
Poggio and Girosi (1989, 1990a, 1990b), where more details can be found.

To illustrate the connection, let us draw an analogy between learning an
input-output mapping and a standard approximation problem, 2-D surface
reconstruction from sparse data points. Learning simply means collecting
the examples, i.e., the input coordinates z, y, and the corresponding output
values at those locations, the heights of the surface di. Generalization
means estimating d at locations x, y where there are no examples, i.e., no
data. This requires interpolating or, more generally, approximating the
surface (i.e., the function) between the data points (interpolation is the
limit of approximation when there is no noise in the data). In this sense,
learning is a problem of hypersurface reconstruction (Poggio et al., 1988,
1989; Omohundro, 1987).

From this point of view, learning a smooth mapping from examples is
clearly ill-posed, in the sense that the information in the data is not suf-
ficient to reconstruct uniquely the mapping at places where data are not
available. In addition, the data are usually noisy. A priori assumptions
about the mapping are needed to make the problem well-posed. One of
the simplest assumptions is that the mapping is smooth: small changes in
the inputs cause a small change in the output. Techniques that exploit
smoothness constraints in order to transform an ill-posed problem into a
well-posed one are well known under the term of regularization theory, and
have interesting Bayesian applications (Tikhonov and Arsenin, 1977; Pog-
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gio, Torre and Koch, 1985; Bertero, Poggio and Torre, 1988). We have
recently shown that the solution to the approximation problem given by
regularization theory can be expressed in terms of a class of multilayer net-
works that we call regularization networks or Hyper Basis Functions (see
Fig. 1). Our main result (Poggio and Girosi, 1989) is that the regulariza-
tion approach is equivalent to an expansion of the solution in terms of a
certain class of functions:

N
f(x) = ciG(x;4)+ p(x) (1)

i=1

where G(x) is one such function and the coefficients :.. ;atisfy a linear
system of equations that depend on the N "examples," the data to
be approximated. The term p(x) is a polynomial thal iepends on the
smoothness assumptions. In many cases it is convenit..; to include up
to the constant and linear terms. Under relatively broad assumptions,
the Green's function G is radial and therefore the approximating function
becomes:

Y

f(x) = cG(lx - 4ii 2 ) + p(x), (2)

which is a sum of radial functions, each with its center 4i on a distinct
data point and of constaxt and linear terms (from the polynomial, when
restricted to be of degree one). The number of radial functions, and corre-
sponding centers, is the same as the number of examples.

The interpretation of Eq. 2 is simple: for instance, in the 2D case -
in which the examples corresponds to points of the z,y plane where the
height of the surface is known and generalization corresponds to estimate
the height of the surface at a point in the plane where data are not avail-
able - the surface is approximated by the superposition of, say, several
two dimensional Gaussian distributions, each centered on one of the data
points.

Our derivation shows that the type of basis functions depends on the
specific a priori assumption of smoothness. Depending on it we obtain the
Gaussian G(r) = e-(1)', the well known "thin plate spline" G(r) = r2 In r,
and other specific functions, radial and not. As observed by Broomhead
and Lowe (1989) in the radial case, a superposition of functions like Eq. 1
is equivalent to a network of the type shown in Fig. lb.

The network associated with Eq. 2 can be made more general in terms
of the following extension
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On
1

f(x) = Z cG(Ix - t.)1 ) + p(x) (3)

where the parameters t,, that we call "centers," and the coefficients ca, are
unknown, and are in general much fewer than the data points (n < N).
The norm is a weighted norm

JI(x - t")Ij = (x - t")rW T W(x - t") (4)
where W is an unknown square matrix and the superscript T indicates the
transpose. In the simple case of diagonal W the diagonal elements wj assign
a specific weight to each input coordinate, determining in fact the units of
measure and the importance of each feature (the matrix W is especially
important in cases in which the input features are of a different type and
their relative importance is unknown). Equation 3 can be implemented by
the network of Fig. 1. A sigmoid function at the output may sometimes
be useful without increasing the complexity of the system (see Poggio and
Girosi, 1989). Notice that there could be more than one set of Green's
functions, for instance a set of multiquadrics and a set of Gaussians, each
with its own W. Two or more sets of Gaussians, each with a diagonal W,
are equivalent to sets of Gaussians with their own as.

2.1 Learning
In the framework of the previous section the stage of learning is simply
the stage of estimating from the data - the examples - the values of the
parameters in the representation we have derived, i.e. equation (4). Itera-
tive methods can be used to find the optimal values of the various sets of
parameters, the ca, the wi and the t,, that minimize an error functional
on the set of examples. Steepest descent is the standard approach that
requires calculations of derivatives. An even simpler method that does not
require calculation of derivatives (suggested and found surprisingly efficient
in preliminary work by Caprile and Girosi, personal communication) is to
look for random changes (controlled in appropriate ways) in the parameter
values that reduce the error. We define the error functional - also called
energy - as

N

H[f'] = Hct,w = EA),
w=1

with
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nO
Ai -Y,- f(x) = Y,- cG(flx, - t.11'

In the first method the values of cc, t, and W that minimize H[f °

are regarded as the coordinates of the stable fixed point of the following
dynamical system:

LoH[f]C --- ca =l ...

aog[f'

aH[f °]

where w is a parameter. The derivatives are rather complex (see Poggio
and Girosi, 1990a and Notes section).

The second method is simpler: random changes in the parameters are
made and accepted if H[fI] decreases. Occasionally, changes that increase
H[f ] may also be accepted (similarly to the Metropolis algorithm).

2.2 Interpretation of the Network

The interpretation of the network of Fig. 1 is the following. After learn-
ing, the centers of the basis functions are similar to prototypes, since they
are points in the multidimensional input space. Each unit computes a
(weighted) distance of the inputs from its center, that is a measure of their
similarity, and applies to it the radial function. In the case of the Gaussian,
a unit will have maximum activity when the new input exactly matches
its center. The output of the network is the linear superposition of the
activities of all the basis functions in the network, plus direct, weighted
connections from the inputs (the linear terms of p(x)) and from a con-
stant input (the constant term). Notice that in the limit case of the basis
functions approximating delta functions, the system becomes equivalent to
a look-up table. During learning the weights c are found by minimizing
a measure of the error between the network's prediction and each of the
examples. At the same time, the centers of the radial functions and the
weights in the norm are also updated during learning. Moving the centers
is equivalent to modifying the corresponding prototypes and corresponds
to task-dependent clustering. Finding the optimal weights W for the norm
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is equivalent to transforming appropriately, for instance scaling, the input

coordinates and corresponds to task-dependent dimensionality reduction.

Regularization networks- of which HyperBFs are the most general and

powerful version - represent a general framework for learning smooth map-
pings that rigorously connects approximation theory, generalized splines
and regularization with feedforward multilayer networks. They also con-
tain as special cases the Radial Basis Functions technique (Micchelli, 1986;
Powell, 1987; Broomhead and Lowe, 1988) and several well-known algo-
rithms, especially in the pattern recognition literature.

3 A Proposal for a Biological Implementa-
tion

In this section we point out some remarkable properties of Gaussian Hy-
perBF, that may have implications for neurobiology.

3.1 Factorizable Radial Basis Functions

The synthesis of (weighted) radial basis functions in high dimensions may
be easier if they are factorizable. It is easily seen that the only radial
basis function which is factomzable is the Gaussian (with diagonal W). A
multidimensional Gaussian function can be represented as the product of
lower dimensional Gaussians. For instance a 2D Gaussian radial function
ceatered in t can be written as:

_,_=2 _2

G(jx - tile) - e-IIX t "- e e 2W (5)

with o', = t/w 1 and o,, = 1/w 2, where w, and w 2 are the elements of the
matrix W assumed, in this section, to be diagonal.

This dimensionality factorization is especially attractive from the phys-
iological point of view, since it is difficult to imagine how neurons could
compute G(flx-tfl 2). The scheme of figure 2, on the other hand, is
physiologically plausible. Gaussian radial functions in one, two and pos-
sibly three dimensions can be implemented as receptive fields by weighted
connections from the sensor arrays (or some retinotopic array of units rep-
resenting with their activity the position of features). Gaussians in higher
dimensions can then be synthesized as products of one and two dimensional
receptive fields.

This scheme has three additional interesting features:
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1. the multidimensional radial functions are synthesized directly by ap-

propriately weighted connections from the sensor arrays, without any
need of an explicit computation of the norm and the exponential.

2. 2D Gaussians operating on the sensor array or on a retinotopic array
of features extracted by some preprocessing transduce the implicit
position of features in the array into a number (the activity of the
unit).

3. 2D Gaussians acting on a retinotopic map can be regarded each as
representing one 2D "feature," i.e., a component of the input vec-
tor, while each center represents the "template," resulting from the
conjunction of those lower-dimensional features. Notice that in this
analogy the radial basis function is the AND of several features and
could also include the negation of certain features, that is the AND
NOT of them. W weights the importance of the different features.

3.2 Biophysical Mechanisms

3.2.1 The Network

The multiplication operation required by the previous interpretation of
Gaussian GRBFs to perform the "conjunction" of Gaussian receptive fields
is not too implausible from a biophysical point of view. It could be per-
formed by several biophysical mechanisms (see Koch and Poggio, 1987).
Here we mention three mechanisms:

1. inhibition of the silent type and related circuitry (see Torre and Pog-
gio, 1978; Poggio and Torre, 1978)

2. the AND-like mechanism of NMDA receptors

3. a logarithmic transformation, followed by summation, followed by
exponentiation. The logarithmic and exponential characteristic could
be implemented in appropriate ranges by the sigmoid-like pre-to-
postsynaptic voltage transduction of many synapses.

If the first or the second mechanism is used, the product of figure 3
can be performed directly on the dendritic tree of the neuron representing
the corresponding radial function (alternatively, each dendritic tree may
perform pairwise products only, in which case a logarithmic number of
cells would be required). The scheme also requires a certain amount of

memory per basis unit, in order to store the center vector. In the case of
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Gaussian receptive fields used to synthesize Gaussian radial basis functions,
the center vector is effectively stored in the position of the 2D (or ID)
receptive fields and in their connections to the product unit(s). This is
plausible physiologically.

The linear terms (the direct connections from the inputs to the output
in figure 1) can be realized directly as inputs to the output neuron that
summates linearly its synaptic inputs (an output nonlinearity is allowed
and will not change the basic form of the model, see Poggio and Girosi,
1989). They may also be realized through intermediate linear units.

3.2.2 Mechanisms for Learning

Do the update schemes have a physiologically plausible implementation?
Consider first the steepest descent methods, which require derivatives.
Equation (6) or a somewhat similar, quasi-hebbian scheme is not too un-
likely and may require only a small amount of neural circuitry. Equation
(7) seems more difficult to implement for a network of real neurons.

Methods such as the random descent method, which do not require
calculation of derivatives are biologically much more plausible and seem
to perfnrm very well in preliminary experiments. In the Gaussian case,
with basis functions synthesized through the product of Gaussian receptive
fields, moving the centers means establishing or erasing connections to the
product unit. A similar argument can be made also about the learning of
the matrix W. Notice that in the diagonal Gaussian case the parameters
to be changed are exactly the a of the Gaussians, i.e., the spread of the
associated receptive .'Lelds. Notice also that the a, for all centers on one
particular dimension is the same, suggesting that the learning of wi may
involve the modification of the scale factor in the input arrays rather than
a change in the dendritic spread of the postsynaptic neurons.

In all these schemes the real problem consists in how to provide the
"teacher" input (but see figure 5).

4 Visual Recognition of 3D Objects and
Face Sensitive Neurones

We have recently suggested and demonstrated how to use a HyperBF net-
work to learn to recognize a 3D object. This section reviews very briefly
this work (Poggio and Edelman, 1990), where more references can be found,
and then suggests that the brain may use a similar strategy. Face sensitive
neurons are discussed as a specific instance.
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4.1 HyperBF Networks for Recognizing 3D Objects

A 3D object gives rise to an infinite variety of 2D images or views, because
of the infinite number of possible poses relative to the viewer, and because
of arbitrarily different illumination conditions. Is it possible to synthesize
a module that can recognze an object from any viewpoint, after it learns
its 3D structure from a small -ct of perspective views? We have have
recently shown (Poggio and Edelman, 1990) that the HyperBF scheme
may provide a solution to the problem provided that relatively stable and
uniquely identifiable features (that we will call "labeled" features) can be
extracted from the image.

In our scheme a view is represented as a 2N vector X1, Y1, X2, Y2,• ZN, YN
of the coordinates on the image plane of N labeled and visible feature points
on the object. We assume that a view of an object is a vector of this type
(instead of position in the image of feature points we have also used angles
between corners and length of segments or both), in general augmented by
components that represent other properties of the object not necessarily
related to its geometric shape, such as color or texture. We also assume
that the function that maps the views into 0, 1 (0 if the view is of another
object, 1 if the view is of the correct object) can be approximated by a
smooth function (if this were false, one could approximate the mapping
from the view to a "standard" view and then apply a radial function to
the result, see Poggio and Edelman, 1990).

The network used for this task is shown in Figure 3 (see also Figure
4). In the simplest version (fixed centers) the centers correspond to some
of the exampies, i.e., some views of the object. Updating the centers is
equivalent to modifying the corresponding "prototypical views". Updating
the weights of the matrix W corresponds to changing the relative impor-
tance of the various features that define the views of an object. This is
important in the case in which these features are of a completely different
type: a large w indicates a larger weight in the feature in the measure of
similarity and is equivalent to a small or in the Gaussian function. Fea-
tures with a small role have a very large a: their exact position or value
does not matter much. Of course, the problem the network solves is a
caricature of the full problem of object recognition: one isolated object,
without occlusions or noise and moreover with image features assumed to
be matched to models features (for a similar approach see [2]). Existing
computer vision algorithms for model-based recognition typically deal with
more complex situations. We think however that the approach described
here can be extended to more realistic tasks. In a first step in this directio.
we have successfully extended the algorithm to deal with noisy, real, mildly
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selfoccluding objects (Brunelli and Poggio, in press).
An interesting conclusion of this work consists of the small number

of views that is required to recognize an object from the infinite number
of possible views. The results clearly show that the scheme avoids the
main problem of look-up table schemes, the explosion in the number of
entries. Furthermore, the performance of the HyperBF recognition scheme
resembles human performance in a related task. As discussed in Poggio
and Edelman (1990), the number of training views necessary to achieve
an acceptable recognition rate on novel views, 80-100 for the full viewing
sphere, is broadly compatible with the finding that people have trouble
recognizing a novel wire-frame object previously seen from one viewpoint
if it is rotated away from that viewpoint by about 300 (it takes 72 300 x 30'
patches to cover the viewing sphere).

Recently, Biilthoff and Edelman (1990) and references therein have ob-
tained interesting psychophysical results that support this model for human
recognition of a certain class of 3D objects against other possible models.
In general, the experimental results fit closely the prediction of theories of
the 2D interpolation variety and appear to contradict theories that involve
3D models.

4.2 Face Sensitive Neurons

The HyperBF recognition scheme we have outlined has suggestive simi-
larities with some of the data about visual neurons responding to faces
obtained by Perrett and coworkers recording from the temporal associa-
tion cortex (see Perrett et al., 1987 and references therein, Poggio and
Edelman, 1990). Let us consider the network of figure 3 as the skeleton for
a model of the circuitry involved in the recognition of faces. One expects
different modules one for each different object of the type of the network of
Figure 3. One also expects hierarchical organizations: for instance a net-
work of the HyperBF type may be used to recognize certain types of eyes
and then may serve as input to another network involved in recognizing a
certain class of faces, which may be itself one of the inputs to a network for
a specific face. Different types of cells may then be expected. The overall
output of a network for a specific face may be identified with the behavioral
responses associated with recognition and may or may not coincide with an
individual neuron. There should be cells or parts of cells corresponding to
the centers, i.e., to the prototypes used by the networks. The response of
these neurons should be a Gaussian function of the distance of the input to
the template. These units would be somewhat similar to "grandmother"
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filters with a graded response, rather than binary detectors, each repre-
senting a prototype. They would be synthesized as the conjunction of, for
instance, two-dimensional Gaussian receptive fields looking at a retinotopic
map of features. During learning, the weights of the various prototypes in
the network output are modified to find the optimal values that minimize
the overall error. The prototypes themselves are slowly changed to find op-
timal prototypes for the task. The weights of the different input features
is also modified to perform task-dependent dimensionality reduction.

Some of these expectations are consistent with the experimental find-
ings of Perret et al. (1987). Some of the neurons described have several
of the properties expected from the units of a HyperBF network with a
center, i.e., a prototype that corresponds to a view of a specific face.

Some of the Main Data (from Perret et al., 1987 and references therein)

" The majority of cells responsive to faces are sensitive to the general
characteristics of the face and they are somewhat invariant to its
exact position and attitude.

" Presenting parts of the face in isolation revealed that some of the
cells responded to different subsets of features: some cells are more
sensitive to parts of the face such as eyes or mouth.

" There are cells selective for a particular view of the head. Some
cells were maximally sensitive to the front view of a face, and their
response fell off as the head was rotated into the profile view, and
others were sensitive to the profile view with no response to the front
view of the face.

" There are cells that are specific to the views of one individual. It
seems that for each known person there would be a set of 'face recog-
nition units'. Our model applies most directly to these neurons.

5 Theories of the Cerebellum and of Motor
Control

5.1 Marr's and Albus Models of the Cerebellum

The cerebellum is a part of the brain that is important in the coordination
of complex muscle movements. The neural organization of the cerebellum
is highly regular and well known (see Figure 5). Marr (1969) and Albus
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(1972) modeled the cerebellum as a look-up table. The critical part of
their theories is the assumption that the synapses between the parallel
fibers and the Purkinje cells are modified as a function of the Purkinje cell
activity and the climbing fibers input. I suggest (see figure 5) that the
cerebellum is a HyperBF network or set of networks (one for each Purkinje
cell). Instead of a simple look-up table, the cerebellum would be a function
approximation module (in a sense, "an approximating look-up table"). In
our conjecture, basket and Golgi cells would have different roles from the
roles assumed in the Marr-Albus theory. In particular, the Golgi cells,
which receive inputs from the parallel fibers and whose axons synapse on
the granule cells-mossy fibers clusters, may be used to change the norm
weights W.

Key Assumptions

* granule cells correspond to basis units (there may be as many as
200,000 granule cells per Purkinje cell) representing as many "exam-
ples"

a Purkinje cells are the outputs of the network

* climbing fibers are responsible for modifying synapses from granule
cells to the Purkinje cell.

5.2 Theories of Motor Control

There are at least two aspects of motor control in which HyperBF modules
could be used

* to compute smooth, time-dependent trajectories - for instance arm
trajectories - given sparse points such as initial, final and intermedi-
ate positions.

e to associate to each position in the trajectory the appropriate field
of muscle forces.

These two problems may be solved by two modules that can be used in
series, the first one providing the input to the second one (see figure 6a
and 6b). I will first consider the problem of computing appropriate smooth
trajectories from sparse points in space-time. An interesting question is:
are HyperBFs a plausible implementation for Flash and Hogan's minimum
jerk principle for the coordination of arm movements? Flash and Hogan
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(1985) found experimental evidence that arm trajectories minimize jerk,
i.e., C = IIx(3) + y(s)II1, where X

( 3) is the third temporal derivative of z.
This suggests a regularization principle with a stabilizer corresponding to
add ve quintic splines. HyperBF could implement it using basis units
recruited for the specific motion (as many a there are constrained points)
with Gaussian-like or spline-like time-dependent activities (boundary con-
ditions may have to be taken into account). The weights would be learned
during training. As Morasso and Mussa Ivaldi (1982) implied, approxi-
mation schemes of this type amount to composition of elemental move-
ments. It is interesting to observe that jerk is automatically minimized
by the linear superposition of the appropriate elemental movements, i.e.,
the appropriate Green's functions. Thus a scheme of the Morasso-Mussa
Ivaldi type can be made to be perfectly equivalent to the Flash-Hogan
minimization principle. The fact that the minimum jerk principle can be
implemented directly by a HyperBF network is attractive from the point
of view of a biological implementation since biologically implausible direct
minimization procedures are not required anymore. The minimization is
implicit in the form of the elemental movements; weighted superposition
of the elemental movements seems a much easier operation to implement
in the motor system than explicit minimization.

The second problem requires a neural circuit that associates an equi-
librium position to an appropriate activation. Bizzi (see for instance Bizzi
et al., 1990) suggests that a group of spinal cord interneurons specify the
limb's final position and configuration through a field of muscle forces that
have the appropriate equilibrium point. Bizzi et al. (1990) propose that
the spinal cord contains aspects of motor behavior reminiscent of a look-
up table. Their findings extend several results in the area of oculomotor
research, where investigators have described neural structures whose acti-
vation brings the eyes or the head to a unique position. I suggest that the
required look-up table behavior may be implemented through a HyperBF
module that requires the storage of only a few equilibrium position (or
correspondingly a few conservative-like fields, i.e., appropriate activation
coefficients for the motoneurons) and can interpolate between them (see
figure 6). Notice that the synthesis of a conservative field of muscle force
could be achieved through the superposition (with arbitrary weights, over
the index a) by the motor system of appropriate elementary motor fields
of the form (see Mussa-Ivaldi and Giszter, 1990 in preparation):

5(x, a) = x -x" G,(r1)
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with r. = Ix - x.,Il and G is a radial basis function such as the Gaussian.

6 Summary: a Proposal for How the Brain
Works

The theory proposed in this paper consists of three main points:

1. it assumes that the brain may use modules that approximate multi-
variate functions and that can be synthesized from sparse examples
as basic components for several information processing tasks.

2. it proposes that these modules are realized in terms of HyperBF
networks, of which a rigorous theory is now available.

3. it shows how HyperBF networks can be implemented in terms of
plausible biophysical mechanisms.

The theory is in a sense a modern version of the grandmother neurons
idea, made computationally plausible by eliminating the combinatorial ex-
plosion in the number of required cells that was the main problem in the
old idea.

The proposal that much information processing in the brain is per-
formed through modules that are similar to enhanced look-up tables is
attractive for many reasons. It also promises to bring closer apparently
orthogonal views, such as the immediate perception of Gibson and the rep-
resentational theory of Marr, since almost iconic "snapshots" of the world
may allow the synthesis of computational mechanisms completely equiv-
alent to vision algorithms such as, say, structure-from-motion. The idea
seems to change significantly the computational perspective on several vi-
sion tasks. As a simple example, consider the different specific tasks of
hyperacuity, as considered by the psychophysicists. The theory developed
here would suggest that an appropriate module for the task, somewhat
similar to a new "routine," may be synthesized by learning in the brain.

Notice that the theory makes two independent claims: the first is that
the brain can be explained in part in terms of approximation modules,
the second is that these modules are of the HyperBF type. The second
claim implies that the modules are an extension of look-up tables. Notice
that there are schemes other than HyperBF that could be used to extend
look-up tables. Notice also that multilayer Perceptrons, typically used in
conjunction with back-propagation, can also be considered as approxima-
tion schemes, albeit still without a convincing mathematical foundation.
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Unlike HyperBF networks, they cannot be interpreted as direct extensions
of look-up tables (they are more similar to an extension of multidimensional
Fourier series).

The theory suggests that population coding (broadly tuned neurons
combined linearly) is a consequence of extending a look-up table scheme -
corresponding to interval coding - to yield interpolation (or more precisely
approximation, since the examples may be noisy), that is generalization.

The theory suggests some possibly interesting ideas about the evolution
of intelligence. It also makes a number of predictions for physiology and
psychophysics. More work is needed to specify sufficiently the details and
some of the basic assumptions of the theory in order to make it useful to
biologists. The next subsections deal with these last three points.

6.1 Evolution of Intelligence: From Memory to Com-
putation

There is a duality between computation and memory. Given infinite re-
sources the two points of view are equivalent: for instance, I could play
chess by precomputing winning moves for every possible state of the chess-
board! More to the point, notice that basic logical operations can be
defined in terms of truth tables and that all boolean predicates can be
represented in disjunctive normal form, i.e., as a look-up table.

Given that the brain probably has a prodigeous amount of memory
and given that one can build powerful approximating look-up tables using
techniques such as HyperBF, is it possible that part of intelligence may
be built from a set of souped-up look-up tables? One advantage of this
point of view is to make perhaps easier to understand how intelligence
may have evolved from simple associative reflexes. In more than one sense
(biophysical and computational), HyperBF-like networks are a natural and
rather straightforward development of very simple systems of a few neurons
showing basic learning phenomena such as classical conditioning.

6.2 Predictions and Remarks

General Predictions

* Computation, as generalization from examples, emerges from the su-
perposition of receptive fields in a multidimensional input space.
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* Computation is performed by Gaussian receptive fields and their
combination (Lhrough some approximation to multiplication), rather
than by threshold functions.

9 The theory predicts the existence of low-dimensional feature-like cells
and multidimensional Gaussian-like receptive fields, somewhat sim-
ilar to template-like cells. One would expect to find cells that are
tuned to low-level templates, like edges or corners, and others that
are tuned to higher-level templates such as eyes and faces. In all
cases, the prediction is that the activity of the cell should be graded
and should depend in a gaussian-like way on the distance of the input
from the optimal template along any of the defining dimensions , a
fact that could be tested experimentally on cortical cells.

e The HyperBF scheme is a general-purpose circuit, used in the brain
to synthesize modules that can be regarded as approximating look-up
tables. If this point of view is correct, we expect the same basic kind
of neural machinery to be replicated in different parts of the brain
across different modalities (in particular in different cortical areas).

* The "programming style" used by the brain in solving specific percep-
tual and motor problems is to synthesize appropriate architectures
from modules of the type shown in figure 1 (a very simple architecture
built from the basic module of figure 1 is shown in figure 4).

Face Neurons

1. Some of the face cells correspond to basis functions with centers in a
high dimensional input space and are somewhat similar to prototypes
or coarse "grandmother cells"

2. They could be synthesized as the conjunctions of features with Gaussian-
like distance from the prototype.

3. Face cells are not detectors; often several may be active simultane-
ously. The output of the network is a combination of several proto-
types.

4. From our preliminary experiments (Poggio and Edelman, 1990) the
number of basis cells that are required per object is about 40-80 for
the full viewing sphere, but much less (10-20) for each aspect (for
instance frontal views). I conjecture that a similar estimate holds for
faces.
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5. Input to the face cells are features such as eye positions, mouth po-
sition, hair color and so on.

6. Eye features cells may be themselves the output of HyperBF networks
specialized for eyes.

Cerebellum

1. The cerebellum is a set of approximation modules for learning to
perform motor skills (both movements and posture).

2. Its neurons are elements of a HyperBF network: the mossy fibers
are the inputs, the granule cells correspond to the- basis functions
G(x, xi), the Purkinje cells correspond to the output units that sum-
mate the weighted activities of the basis units, whereas the climbing
fibers carry the "teacher" signal yi.

3. The strength of the modifiable synapses between the parallel fibers
and the Purkinje cells corresponds to the c,.

4. Golgi cells may be involved in modifying during learning the center
positions t, and the norm-weights W.

Motor Control

1. The qualitative expectation is to find cells and circuits corresponding
to the two stages shown in figure 6. Spinal cord neurons, according
to very recent data by Bizzi et al. (1990), specify the limb's final
position and configuration.

6.3 The Future

The proposal of this paper is just a rough sketch of a theory. Many details
- some of them critical - need to be filled in. Some basic questions remain.
For instance, how reasonable is the idea of supervised learning schemes?
Or, to say it in a different and perhaps more constructive way, what are
the systems that can be synthesized from building blocks that are just
function approximation modules? And what types of tasks can be solved
by systems of that type?

On the biological side of the theory, the obvious next task is to develop
detailed proposals for the circuitries underlying face recognition, and motor
control (including the circuitry of the cerebellum) that take into account
up-to-date physiological and anatomical data.
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NOTES
Section I

Segmentation of an image in parts that are likely to correspond to separate
objects is probably the most difficult problem in vision. Remember that
already in the Perceptron book (Minsky and Papert, 1969) recognition-in-
context was shown to be significantly harder than recognition of isolated
patterns. We assume here that this problem has been "solved," at least
to a reasonable extent.

" The same basic machinery in the brain may be used for synthesizing many
different, "small" learning modules, as components of many different sys-
tems. This is very different from suggesting a single giant network that
learns everything.

Section 2

The relevant derivatives for optimization methods that need them are

" for the c,,

N9H[f_] -_ -2 AiG(IIxi - ta1v)' (6)
~i=1

e for the centers t,

OH[f'] N
-4c, , AG'(lx, - t 0.JJ.)WTw(x. - t 0) (7)

" and for W:

OH[f1l _ n N

-4W c . AiG'(JIxj - tallr)Qi,., (8)

where Qi,a, = (x, - t.)(x, - ta)T is a dyadic product and G' is the first
derivative of G (for details see Poggio and Girosi, 1990a).

Section 3

" There are many non-radial functions derived from our regularization for-
mulation such as tensor product splines, that are factorizable.

" I have assumed here that all centers have the same W. It is possible
to have sets of different Green's functions, each set with its own W (see
Poggio and Girosi, 1990a).
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" It is natural to imagine hierarchical architectures based on the HyperBF
scheme: a multidimensional Gaussian "template" unit may be a "feature"
input for another radial function (again because of the factorization prop-
erty of the Gaussian). Of course, a whole HyperBF network may be one
of the inputs to another HyperBF network.

" I conjecture that equation 8 could be approximated by a Hebbian-like rule
for the elements of the diagonal W such as

Wk(t + 1) = Wi(t) - C0 7(Xk(t) - (t)0Yt), (9)
a= 1

where y is the output of the upper layer of figure la, i.e., y = Wx and 7
is

y= AG'(Ilxi - t.l1'), (10)

and i labels the i-th example. Such a Hiebbian rule requires back-connections
from later stages in the network to the upper layer - where W is updated
- in order to broadcast quantities such as the error of the overall network
relative to the i-th example and the derivative G' of the activation of the
units.

" The mechanisms and especially the connections needed to implement the
learning equations or some equivalent scheme are an open question, in
terms of biological plausibility. More work is needed.

Section 4

* The HyperBF scheme addresses only one part of the problem of shape-
based object recognition, the variability of object appearance due to chang-
ing viewpoint. The key issue of how to detect and identify image features
that are stable for different illuminations and viewpoints is outside the
scope of the network.

" Notice that the HyperBF approach to recognition does not require as
inputs the z, y coordinates of image features: other parameters of appro-
priate features can also be used.

" In a similar vein, notice that the HyperBF network can provide, with the
same centers (but different c), other parameters of the object, such as its
pose, instead of simply a yes, no recognition signal.
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Recognition of noisy and partially occluded objects, using realistic feature
identification schemes, requires an extension of the scheme. A natural
extension of the scheme is based on the use of multiple lower-dimensional
centers, corresponding to different subsets of detected features, instead
of one 2N-imensional center for each view in the example set. This
corresponds to a set of networks capable of recognizing different parts of
an object. It is equivalent to a set of networks each with a diagonal W
with some zero entries in the diagonal, instead of one network with W
with non zero diagonal elements.

* Not all features may be always labeled correctly. In general, one expects
a significant "correspondence" problem. Possibly the easiest solution is
to generate all reasonable sequences of labels for a given input vector and
simply try them out on the network. This is of course equivalent to trying
in parallel the given input on many networks each with a different labeling
of its inputs.

" An obvious use of these learning/approximation modules based on the
HyperBF techniqued is based on a hierarchical composition of GRBF
modules, in which the outputs of lower-level modules assigned to detect
object parts and their relative disposition in space are combined to allow
recognition of complex structured objects. Figure 4 is an example of this
rchitecture.

Section 5

" Zipser and Andersen (1988) have presented intriguing simulations sug-
gesting that a backpropagation network trained to solve the problem of
converting visual stimuli in retinal coordinates to head centered coordi-
nates generates receptive fields similar to the ones experimentally found
in cortical area 7 of the monkey. We conjecture that Andersen's data may
be better accounted for by a HyperBF network. For simplicity, let us
consider the one dimensional version of the problem Zipser and Andersen
propose is solved by neurons in area 7. The position of a spot of light on
the retina is given as r; the eye position relative to the head is also known
as e. The problem is to compute the position of the spot of light relative
to the head, i.e., h = r + e. Stated in these terms, the problem is compu-
tationally trivial and its solution simply requires the addition of the two
inputs r and e. The situation is, however, more complicated due to the
actual representation in which r and e are given. In the equation, r and e
are represented as numbers. Zipser and Andersen assume, in accordance
with physiology, a different representation: they assume that the position
r of a spot of light is coded by the presence or absence of activity of one
or more cells in a retinotopic array. From this point of view, the goal of
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the computation carried out by the network is to change representation
from array representation to number representation.

The simplest solution to the problem of changing from an array represen-
tation to a number representation is the following. Assume that only one
cell in the array f(z) is excited at any given position, i.e., f(z) = S(r - z).
Simplifying somewhat the situation assumed by Zipser and Andersen, but
not altering it in any significant way, let us assume that e is represented
directly as a number or a firing rate. The problem then is to convert the
array representation .f(z) = 6(r - z) for the retinal position into a number
(or a firing rate) representation. Consider a linear unit that surmmates lin-
early all inputs with the "receptive field" w(z). The output I is given by
1 = f w(z)f(x)dx. For f(z) = 6(z - r), the choice w(z) = z yields I = r.
Thus a simple solution to our problem of converting an array representa-
tion into a number representation only needs receptive fields that increase
linearly with eccentricity (notice that w(z) = az may also be acceptable;
simply a monotonic dependence on z may be a smficient approximation).

If a Gaussian HyperBF network with a polynomial term of degree one is
used to approximate the relation of the equation from a set of input-output
examples, some of the basis functions will be linear units such as the ones
described above and some will be the product of 2D Gaussians representing
the visual receptive fields and 2D Gaussians representing the eye position.
These latter cels would probably account for the multiplicative property
of the area 7 cells found by Andersen. We conjecture that other features
of the cells could be replicated in a HyperBF simulation.
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Figure captions

Fig. 1. (a) The basic learning module that - we conjecture - is used by the

brain for a number of tasks. The module learns to approximate a multivariate
functions from a set of examples (i.e., a set of input-output pairs). (b A HyperBF
network equivalent to a module for approximating a scalar function of three
variables from sparse and noisy data. The data, a set of points where the
value of the function is known, can be considered as examples to be used during
learning. The hidden units evaluate the function G(x; t,,), and a fixed, nonlinear,
invertible function may be present after the summation. The units are in general
fewer than the number of examples. The parameters that are determined during
learning are the coefficients c,, the centers t,, and the norm-weights W. In
the radial case G = G(Ix - tn[iI') and the hidden units simply compute the
radial basis functions G at the "centers" t, . The radial basis functions may be
regarded as matching the input vectors against the "templates" or "prototypes"
that correspond to the centers (consider, for instance of a radial Gaussian around
its center, which is a point in the n-dimensional space of inputs). There may be
also connections computing the polynomial term of 1: constant and linear terms
(the dotted lines in figure Ib) may be expected in most cases.

Fig. 2 A three-dimensional radial Gaussian implemented by multiplying two-
dimensional Gaussian and one-dimensional Gaussian receptive fields. The latter
two functions are synthesized directly by appropriately weighted connections
from the sensor arrays, as neural receptive fields are usually thought to arise.
Notice that they transduce the implicit position of stimuli in the sensor array
into a number (the activity of the unit). They thus serve the dual purpose of
providing the required "number" representation from the activity of the sen-
sor array and of computing a Gaussian function. 2D Gaussians acting on a
retinotopic map can be regarded as representing 2D "features," while the radial
basis function represents the "template" resulting from the conjunction of those
lower-dimensional features.

Fig. 3. (a) The HyperBF network proposed for the recognition of a 3D object
from any of its perspective views (Poggio and Edelman, 1990). The network
attempts to map any view (as defined in the text) into a standard view, ar-
bitrarily chosen. The norm of the difference between the output vector f and
the standard view s is thresholded to yield a 0, 1 answer. The 2N inputs ac-
comodate the input vector v representing an arbitrary view. Each of the K
radial basis functions is initially centered on one of a subset of the M views used
to synthesize the system (K < M). During training each of the M inputs in
the training set is associated with the desired output, i.e., the standard view
s. Fig. 3(b) shows a completely equivalent interpretation of (a) for the special
case of Gaussian radial basis functions. Gaussian functions can be synthesized
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by multiplying the outputs of two-dimensional Gaussian receptive fields, that
"look" at the retinotopic map of the object point features. The solid circles
in the image plane represent the 2D Gaussians associated with the first radial
basis function, which represents the first view of the object. The dotted circles
represent the 2D receptive fields that synthesize the Gaussian radial function
associated with another view. The 2D Gaussian receptive fields transduce po-
sitions of features, represented implicitly as activity in a retinotopic array, and
their product "computes" the radial function without the need of calculating
norms and exponentials explicitly. From Poggio and Girosi (1990b).

Fig. 4. A hierarchical scheme in which HyperBF modules are inputs to another
HyperBF module. As an example, a scheme of this type may be used for 3D
object recognition in the general case of spurious and missing features. Instead
of encoding all n features one encodes only subsets of dimensions d, where d < n.
The inputs to each of the first row of modules is a different set of features of the
object; the output is a value between 0, 1 that indicates the degree of certainty
that the input is the sought object. The last module is a decision module that
integrates the various inputs. Notice that all modules could be synthesized by
learning through independent sets of examples.

Fig. 5. (a) A sketch of the neurons of the cerebellum and their connections.
In our conjecture, these would be the basic elements of a HyperBF network: the
mossy fibers are the inputs, the granule cells correspond to the various centers
and basis functions G(x,xi), the Purkinje cells correspond to the output units
that summate the weighted activities of the basis units, whereas the climbing
fibers carry the "teacher" signal yi. The strength of the synapses between the
parallel fibers and the Purkinje cells would correspond to the c,. (b) The
corresponding HyperBF network is shown on the right: it has two basis functions
corresponding to the two granule cells on the left and two output summation
units corresponding to the two Purkinje cells on the left.

Fig. 6. Two problems in motor control: (a) determining the trajectory x(t)
from a small set of points (ti, zi) on the desired trajectory and (b) computing
the field of muscle forces for each of the points on the trajectory. The figure
suggests that two different HyperBF modules may be used to perform both
tasks. In (a) a HyperBF module approximates the trajectory from the sparse
points by superimposing Gaussian distributions with the appropriate weights
in such a way to satisfy some minimum-jerk-like principle. In (b) a module of
the HyperBF type has been synthesized during development and continuously
adapted to generate the appropriate field of forces for each equilibrium position
x. It is similar to an approximating look-up table. A behaviour of the look-up
table type was suggested by Bizzi because of very recent experimental data (see
Bizzi et al., 1990).
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